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The factor analysis model

X = Λξ + U

where
X are multivariate normal random vectors
Λ are factor loadings
ξ are common factors
U are error of measurement

Exploratory factor analysis model: 
no prior values for factor loadings

Applied in psychology, economics, chemistry, survey data, etc.



The problem
A well known issue in exploratory factor analysis is that

the solution is unique only up to a rotation of the factor loadings

In the orthogonal case
Λ = AT 

where A is an initial solution, and is T any orthogonal matrix.

In the oblique case
Λ = A(T’)-1

where T is any normal matrix.

The rotation problem is to find T such that Λ is
simple and looks good. This is usually done by 

optimizing some criterion.



Criteria

Let Q be a smooth criterion function that measures
the complexity of Λ.

Orthogonal: Minimize
f(T) = Q(Λ) = Q(ΑΤ)

over all orthogonal matrices. 

Oblique: Minimize
f(T) = Q(Λ) = Q(Α(Τ’)-1)
over all normal matrices.



Gradient projection for factor analysis

0. Choose initial T.

1. Compute G = df/dT, gradient G of f at T, the matrix 
of partial derivatives.

2. Replace T by its projection of T - αG onto the manifold
of permissible matrices.

3. Goto step 1 or stop.

Function values are minimized
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The algorithm visualized
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Algorithm properties

Can be shown to decrease value of f at every
iteration, with appropriate α. A partial

step modification is used to
guarantee this.



How to compute G

In step 1, G = df/dT is needed

Let Gq = dQ/dΛ is gradient of Q at Λ. Because
G = A’Gq            (orthogonal)
G = -(Λ’GqT -1)’     (oblique)

all that required to compute G is Gq.



Mathematical definitions

Frobenius norm: (X,Y) = tr(X’Y)
Elementwise product: X×Y and X2 = X×X

Example: Quartimax (orthogonal only)

Q(Λ) = -(1/4) ∑i ∑r λir4 = -(Λ2, Λ2)/4
Note: Minus because of minimization. 

dQ = -(Λ×dΛ,Λ2)/2 - (Λ2,Λ×dΛ)/2
= -(Λ×dΛ,Λ2) = -(Λ3, dΛ)

Thus, Gq = -Λ3



Orthogonal
Crawford-Ferguson (quartimax, varimax, equamax, parsimax,
factor parsimony), orthomax (quartimax, varimax, equamax),

invariant pattern simplicity, minimum entropy, oblimax,
simplimax, tandem criterion I and II, target rotation.

Oblique
Oblimin (quartimin, biquartimin), Crawford-Ferguson, 

geomin, invariant pattern simplicity, 
simplimax, target rotation.

Currently implemented



How to obtain the algorithms?

Routines can be downloaded free of charge from
http://www.stat.ucla.edu/research/gpa

SAS PROC IML
SPSS matrix language
Splus
R
Matlab
(Stata)



Alternatives
Pairwise rotation. Implemented in

CEFA (Browne et al., 1998)
http://quantrm2.psy.ohio-state.edu/browne

Browne (2001). An overview of analytic rotation
procedures in exploratory factor analysis.

Multivariate Behavioral Research, 36, 111-150.

Questions?
coen@stat.ucla.edu


