Computer code for the general gradient pro-
jection rotation algorithms

What follows is a discription of some specific computer code for the general
orthogonal and oblique gradient projection (GP) rotation algorithms. Also
included are examples of how to use these and background references. The
code used is Matlab (1995). This was choosen because it is a very transparant
matrix language that is easily translated to S, R, and other environments or
may be used directly. The code itself in editable form may be downloaded
from http://www.stat.ucla/research. See Jennrich (2000, 2001) for a
more complete discussion of GP algorithms. The algorithms given here dif-
fer in some minor ways from these references. They also differ from the
algorithms specifically designed for rotation in factor analysis. The latter
may be viewed as special cases of the general algorithms.

A general GP algorithm for orthogonal rotation

The general orthogonal rotation problem is to minimize
f(T) given TT=1I

where T need not be square. For orthogonal rotation in factor analysis T is
square and

f(T') = Q(AT)

where () is a factor analysis rotation criterion and A is an initial loading
matrix. Here we deal with the general problem rather than this special case.

The computer code has two parts. The first is the basic GP minimization
algorithm for orthogonal rotation. The second computes the value and gradi-
ent of f at T'. The first is used without change for any criterion. The second
is criterion specific and must be produced for each criterion of interest.

e What follows is Matlab code for the basic GP algorithm.
function [Th,table]=GPorth(T)
al=1;

table=[];
for iter=0:100



[£,G]=vgf (T);
M=T’*G;
S=(M+M’)/2;
Gp=G-T*S;
s=norm(Gp, ’fro’);

table=[table;iter f loglO(s) all;
if s<10°(-5),break,end

al=2%*al;

for i=0:10
X=T-alx*Gp;
[U,D,V]=svd(X,0);
Tt=Ux*V’;
[ft,Gt]=vgf (Tt);
if ft<f-.5%xs"2%al,break,end
al=al/2;
end

T=Tt;

end

Th=T;

We will comment on some of the more interesting lines of code. The
first line

function [Th,table]=GPorth(T)

defines the calling sequence for the basic general GP algorithm which is
named GPorth. The input matrix T is an initial value for the rotation
matrix. The output matrix Th is the optimum value for the rotation
matrix produced by the GPorth algorithm. The output value table is
a convergence history.

The code line
[f,Gl=vgf(T);

is call to the vgf subroutine. This call produces the value f of f at T
and the value G of the gradient of f at T.

The remaining lines are standard code for the GP algorithm.



e What follows is Matlab code to compute the value of f and gradient G
at an arbitrary T using the quartimax criterion. Because the basic GP
algorithm is designed to minimize rather than maximize, the criterion
f is the negative of the usual quartimax criterion.

function [f,Gl=vgf(T)
global A

L=A%T;
L2=L."2;

f=—-sum(sum(L2.*L2));
G=-A’x(L.xL2);

The first line of code
function [f,G]l=vgf(T)

defines the calling sequence for the subroutine vgf that computes the
value f and gradient G of f at the input rotation matrix T.

The second line
global A

identifies the initial loading matrix A. This might be explicitly inserted
here, but it is usually more convenient to obtain it from elsewhere using
a global command.

The code lines

f=—sum(sum(L2.*L2));
G=-A’*(L.*L2);

give the value f and gradient G of f at T. See Jennrich (2001) for
derivation of the gradient and other applications of the general GP
algorithm.



An example: Thurstone’s box problem

What follows is Matlab code for quartimax rotation of the initial loading
matrix for Thurstone’s (1947, p. 136) box problem. This uses the subroutines
from the previous section. It may be used without change for any quartimax
rotation problem. For some other form of orthogonal rotation, say that used
to fit the DEDICOM model, only the vgf subroutine needs to be changed.

global A

A=[

.659 -.736 .138
.725 .180 -.656
.665 .537 .500
.869 -.209 -.443
.834 .182 .508
.836 .519 .152
.856 -.452 -.269
.848 -.426 .320
.861 .416 -.299
.880 -.341 -.354
.889 -.417 .436
.875 .485 -.093
.667 -.725 .109
717 .246 -.619
.634 .501 .522
.936 .257 .165
.966 -.239 -.083
.625 -.720 .166
.702  .112 -.650
.664 .536 .488
1;

T=eye(3);
[T,table]=GPorth(T);

table
L=A*T



The matrix A is the initial loading matrix for Thurstone’s box problem. The
global A statement in the first line makes A available to the vgf subroutine.
The statement

T=eye(3);
sets the initial rotation matrix to the identity. The subroutine call
[T,table]=GPorth(T);

replaces T by its optimal quartimax value and generates table, the conver-
gence history. The last line

L=AxT

generates the quartimax rotation L of the initial loading matrix A.
The output from this problem is:

table =

0 -10.7152 -0.7427 1.0000
1.0000 -11.4092 -0.1290 2.0000
2.0000 -12.7124 -0.0046 2.0000
3.0000 -13.7183 -0.1260 1.0000
4.0000 -14.1837 -0.7702 0.5000
5.0000 -14.2016 -1.1859 0.5000
6.0000 -14.2042 -1.5949 0.5000
7.0000 -14.2046 -2.0028 0.5000
8.0000 -14.2046 -2.4107 0.5000
9.0000 -14.2046 -2.8185 0.5000
10.0000 -14.2046 -3.2263 0.5000
11.0000 -14.2046 -3.6341 0.5000
12.0000 -14.2046 -4.0419 0.5000
13.0000 -14.2046 -4 .4497 0.5000
14.0000 -14.2046 -4.8575 0.5000
15.0000 -14.2046 -5.2653 0.5000



.01056 -0.9934 -0.0899
.1685  -0.1673 -0.9671
.9823 -0.0950 -0.0819
.1250 -0.5971 -0.7893
.8696 -0.4716 -0.0904
.8757 -0.1410 -0.4523
.0679 -0.8114 -0.5886
.4067  -0.9079  -0.1157
6771 -0.1424  -0.8065
.1013 -0.7233 -0.6946
.5001 -0.9497 -0.0468
.7413 -0.1403 -0.6636
.0056 -0.9838 -0.1200
.2142  -0.1194 -0.9474
.95561 -0.1083 -0.0392
.7823 -0.4054 -0.4393
.3627 -0.7531 -0.5463
.0163 -0.9662 -0.0521
.1077  -0.2067 -0.9346
.9744  -0.0926 -0.0908

O O O O O OO OO OO O0OOOOOoOOo o oo

The algorithm converged smoothly in 15 iterations.

The general GP algorithm for oblique rotation

The general oblique rotation problem is to minimize
f(T) given dg(T'T)=1
where T' is p by k£ with p > k. In factor analysis applications T is square and

A(T) = QA(T) ™)

where @) is a factor analysis rotation criterion and A is an initial loading
matrix. Here we deal with the general problem rather than this special case.

As in the orthogonal case, the Matlab code consists of two subroutines.
These are very similar to those for the orthogonal case and are listed without
comment.

e The basic GPoblq subroutine.



function [T,table]=GPoblq(T)

al=1;

table=[];

for iter=0:500
[f,Gl=vgf(T);
Gp=G-T*diag(sum(T.*G)) ;
s=norm(Gp, ’fro’);

table=[table;iter f loglO(s) all;
if s<10°(-5) ,break,end

al=2x*al;

for i=0:10
X=T-alx*Gp;
v=1./sqrt(sum(X."2));
Tt=Xx*diag(v);

[ft,Gt]=vgf (Tt);
if ft<f-.5xs"2*al,break,end
al=al/2;

end

T=Tt;

end

e The vgf subroutine for quartimin rotation.
function [f,G]=vgf(T)
global A
[p,kl=size(A);
Ti=inv(T);
L=A%Ti’;
L2=L."2;
N=ones (k,k)-eye (k) ;

f=sum(sum(L2.*(L2%N)))/4;



Gg=L.* (L2#*N) ;
G=-(L’*Gqx*Ti)’;

An example: Thurstone’s box problem

The following Matlab code produces a quartimin rotation of the initial load-
ing matrix from Thurstone’s box problem.

global A

A=[

.659 -.736 .138
.725 .180 -.656
.665 .537 .500
.869 -.209 -.443
.834 .182 .508
.836 .519 .152
.856 -.452 -.269
.848 -.426 .320
.861 .416 -.299
.880 -.341 -.354
.889 -.417 .436
.875 .485 -.093
.667 -.725 .109
717 .246 -.619
.634 .501 .522
.936 .257 .165
.966 -.239 -.083
.625 -.720 .166
.702  .112 -.650
.664 .536 .488
1;

T=eye(3);
[T,table]=GPoblq(T);

table



L=A*inv(T’)

phi=T’*T

The output from this code is

table

O© 00 NO O WN -

W WNNDNMDNMDNDNNMNNMNDMNNMNNNREP R, RPR,P PR, PR R R, R R
O O 00 NO O D WNEFE,E O OWOWONO OO WND - O

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

O O O O O O OO OO ODODOOOO0OO0OO0OOFF P, P FPFEPLEFE,LDNNDNNDNDNDNDNODDN

.2302
.2252
.2180
L1911
.1681
.1142
.0236
. 7587
.5699
.4333
.2947
L1727
.0062
.8992
.8463
. 7892
. 7654
. 7529
. 7430
. 7404
. 7391
. 7381
L7379
L7379
L7378
. 7378
L7378
L7378
L7378
L7378
L7378
L7378

.4516
.6220
.4889
.1595
.0039
.0835
.0222
.2225
.2473
.05618
.0694
.1621
.1060
L1121
.2186
.2114
.4110
.5741
.6098
.9247
.0954
.2459
.5369
. 7207
.8828
.1907
.3817
.5165
.8518
.0489
.1464
.5115

O O O O O OO OO OO OO OO OO OOOOO OO O0OOOO0OOoOO0O o

.0000
.0625
.1250
.2500
.1250
.0625
.1250
.2500
.1250
.0625
.1250
.2500
.5000
.1250
.1250
.2500
.1250
.1250
.2500
.0625
.1250
.2500
.0625
.1250
.2500
.0625
.1250
.2500
.0625
.1250
.2500
.0625



32.
33.
34.
35.
36.
37.
38.

0000
0000
0000
0000
0000
0000
0000

.0996
.0071
.0129
.0548
.8563
.8356
.1029
.3221
.4628
.0766
.4278
.6594
.1088
.0595
.9899
. 7137
.2203
.0847
.0592
.0034

.0000
.2568
.3216

O O O O O O O

. 7378
L7378
L7378
L7378
L7378
. 7378
L7378

.0236
.0428
.0332
.4493
.3740
. 0487
L1227
.8817
.0852
.6043
.9289
.0772
.0080
.0956
.0072
. 2427
.6354
.0022
.0113
.0365

.2568
.0000

0.3366

. 7155
.9017
.0678
.3798
.5713
.6980
.0412

.0171
.0100
.0504
L7723
.0694
.3604
.5375
.0312
. 7838
.6583
.1229
.6073
.0174
.9868
.0947
.3283
.4597
.05657
.9769
.0394

.3216
.3366
.0000

10

O O O O O O O

.1250
.1250
.2500
.0625
.1250
.2500
.0625



References

Jennrich, R.I. (2001). A simple general proceedure for orthogonal rotation.
Psychometrika, 66, 289-306.

Jennrich, R.I. (2002). A simple general method for oblique rotation. Psy-
chometrika, 67, 7-19.

Matlab (1995). The MathWorks Inc., 24 Prime Park Way, Natick, MA,
01760.

Thurstone, L.L. (1947). Multiple Factor Analysis. Chicago: University of
Chicago Press.

11



