Computer code for derivative free gradient pro-
jection rotation algorithms

What follows is a discription of some specific computer code for orthogonal
and oblique derivative free gradient projection (GP) rotation algorithms.
Also included are examples of how to use these and background references.
The code used is Matlab (1995). This was choosen because it is a very
transparant matrix language that is easily translated to S, R, and other
environments or may be used directly. The code itself in editable form may
be downloaded from http://www.stat.ucla/research. See Jennrich (2003)
for a more complete discussion of derivative free GP algorithms and there
relation to GP algorithms using exact derivatives. This paper includes results
on precision and speed.

A derivative free GP algorithm for orthogonal rotation

The general orthogonal rotation problem is to minimize
f(T)y gven TT=1I

where T need not be square. For orthogonal rotation in factor analysis T is
square and

F(T) = Q(AT)
where () is a factor analysis rotation criterion and A is an initial loading
matrix.

The computer code has three parts. The first is the basic GP minimiza-
tion algorithm for orthogonal rotation. The second computes the gradient of
f at T using numerical derivatives and the third defines the function f. The
first two are used without change for any criterion. The third is criterion
specific and must be produced for each criterion of interest, for example one
for quartimax and another for varimax.

e What follows is Matlab code for the basic GP algorithm.
function [Th,table]=GPorth(T)

al=1;
table=[];

for iter=0:100
f=ff(T);
G=Gf (T);
M=T’*G;
S=(M+M’)/2;
Gp=G-T*S;
s=norm(Gp, ’fro’);

table=[table;iter f loglO(s) all;
if s<107(-5),break,end

al=2%al;

for i=0:10
X=T-alx*Gp;
[U,D,V]=svd(X,0);
Tt=U*V’,
ft=£ff(Tt);
if ft<f-.5xs"2%al,break,end
al=al/2;
end

T=Tt;

end

Th=T;

We will comment on some of the more interesting lines of code. The
first line

function [Th,table]=GPorth(T)

defines the calling sequence for the basic GP algorithm which is named
GPorth. The input matrix T is an initial value for the rotation matrix.
The output matrix Th is the optimum value for the rotation matrix
produced by the GPorth algorithm. The output value table is a con-
vergence history.

The two code lines

f=ff(T);
G=Gf (T) ;

are calls to the subroutines ff and Gf. These calls produce the value £
of f at T and the value G of the gradient of f at T.

The remaining lines are standard code for the GP algorithm.

What follows is Matlab code to compute the gradient of f at T' using
numerical differentiation, specifically the symmetric difference formula.

function G=Gf(T)

k=size(T,1);
ep=.0001;
Z=zeros(k,k);
G=Z;

for r=1:k
for s=1:k
dT=Z;
dT(r,s)=ep;
G(r,s)=(ff (T+dT)-£f (T-dT))/(2xep) ;
end
end

The first line
function G=Gf (T)

defines the calling sequence for the gradient subroutine Gf. The input
matrix T is a rotation matrix and the output matrix G is an approxi-
mation to the gradient of f at T.

The code line
ep=.0001;

defines the increment used for the symmetric difference approximations
to the partial derivatives of f(7") with respect to the components of 7T
These are computed one component at a time in the double “for loop”
that appears at the end of the code.

The code line

G(r,s)=(ff (T+dT)-ff (T-dT))/(2%ep) ;

produces the symmetric difference approximation to the derivative of
f(T) at the (r,s) component of T

What follows is Matlab code to compute the value of f at an arbitrary
T using the quartimax criterion. Because the basic GP algorithm is de-
signed to minimize rather than maximize, the value of f is the negative
of that given by the usual quartimax criterion.

function f=£ff(T)

global A

L=AxT;
L2=L."2;

f=—sum(sum(L2.*L2));
The first line of code
function f=ff(T)

defines the calling sequence for the subroutine ff that computes the
value f of f at the input rotation matrix T.

The second line
global A
identifies the initial loading matrix A. This might be explicitly inserted

here, but it is usually more convenient to obtain it from elsewhere using
a global command.

The code line
f=—sum(sum(L2.*L2));

gives the value £ of f at T. This is the negative of the quartimax
criterion at L.

An example: Thurstone’s box problem

What follows is Matlab code for quartimax rotation of the initial loading
matrix from Thurstone’s (1947, p. 136) box problem. This uses the subrou-
tines from the previous section. They may be used without change for any
quartimax rotation problem. For some other form of orthogonal rotation say
varimax only the ff subroutine needs to be changed.

global A

A=[

.659 -.736 .138
.725 .180 -.656
.665 .537 .500
.869 -.209 -.443
.834 .182 .508
.836 .519 .152
.856 -.452 -.269
.848 -.426 .320
.861 .416 -.299
.880 -.341 -.354
.889 -.417 .436
.875 .485 -.093
.667 -.725 .109
717 .246 -.619
.634 .501 .522
.936 .257 .165
.966 -.239 -.083
.625 -.720 .166
.702 .112 -.650
.664 .536 .488
1;

T=eye(3);
[T,table]=GPorth(T);

table
L=A*T

The matrix A is the initial loading matrix from Thurstone’s box problem. The
global A statement in the first line makes A available to the ff subroutine.
The statement

T=eye(3);
sets the initial rotation matrix to the identity. The subroutine call
[T,table]=GPorth(T);

replaces T by its optimal quartimax value and generates table, the conver-
gence history. The last line

L=AxT

generates the quartimax rotation L of the initial loading matrix A.
The output from this problem is:

table =

0 -10.7152 -0.1406 1.0000
1.0000 -13.2425 0.3893 2.0000
2.0000 -14.1458 0.0407 0.2500
3.0000 -14.1964 -0.4122 0.0625
4.0000 -14.2029 -0.7978 0.0625
5.0000 -14.2041 -1.0890 0.0625
6.0000 -14.2046 -1.6858 0.1250
7.0000 -14.2046 -2.2221 0.1250
8.0000 -14.2046 -2.5689 0.0625
9.0000 -14.2046 -3.1207 0.1250
10.0000 -14.2046 -3.4477 0.0625
11.0000 -14.2046 -4.0147 0.1250
12.0000 -14.2046 -4 .3231 0.0625
13.0000 -14.2046 -4.9043 0.1250
14.0000 -14.2046 -5.1958 0.0625

0.0105 -0.9934 -0.0899

.1685 -0.1673 -0.9671
.9823 -0.0950 -0.0819
.1250 -0.5971 -0.7893
.8696 -0.4716 -0.0904
.8757 -0.1410 -0.4523
.0679 -0.8114 -0.5886
.4067 -0.9079 -0.1157
6771 -0.1424 -0.8065
.1013 -0.7233 -0.6946
.5001 -0.9497 -0.0468
.7413 -0.1403 -0.6636
.0056 -0.9838 -0.1200
.2142 -0.1194 -0.9474
.9561 -0.1083 -0.0392
.7823 -0.4054 -0.4393
.3627 -0.7531 -0.5463
.0162 -0.9662 -0.0521
.1077 -0.2067 -0.9346
.9744 -0.0926 -0.0908

O O O O O OO OO OO OOOO oo oo

The algorithm converged smoothly in 14 iterations. To the precision dis-
played the rotated loading matrix L is identical to that produced using the
orthogonal GP algorithm with exact derivatives.

A derivative free GP algorithm for oblique rotation
The general oblique rotation problem is to minimize
f(T) given dg(T'T)=1
where T' is p by k£ with p > k. In factor analysis applications T is square and
F(T) = QA(T)™)

where () is a factor analysis rotation criterion and A is an initial loading
matrix.

As in the orthogonal case, the Matlab code consists of three subroutines.
These are listed without comment.

e The basic GPoblq subroutine.

function [T,table]=GPoblq(T)

al=1;

table=[];

for iter=0:100
f=££(T);
G=Gf (T);
Gp=G-T*diag(sum(T.*G)) ;
s=norm(Gp, ’fro’);

table=[table;iter f loglO(s) all;
if s<10°(-5),break,end

al=2%al;

for i=0:10
X=T-alx*Gp;
v=1./sqrt(sum(X."2));
Tt=X*diag(v) ;

ft=£f£f(Tt);
if ft<f-.b5%xs"2%al,break,end
al=al/2;

end

T=Tt;

end

e The Qf subroutine is exactly as it was for the orthogonal case.
function G=Gf(T)

k=size(T,1);
ep=.0001;
Z=zeros (k,k);
G=Z;

for r=1:k
for s=1:k
dT=Z;
dT(r,s)=ep;

G(r,s)=(ff (T+dT)-ff(T-dT))/(2*ep) ;
end
end

e The ff subroutine for quartimin rotation.
function f=£ff(T)
global A

[p,k]l=size(A);
L=A*inv(T’);
L2=L."2;

N=ones (k,k)-eye (k) ;

f=sum(sum(L2.*(L2*N)));

An example: Thurstone’s box problem

The following Matlab code produces a quartimin rotation of the initial load-
ing matrix from Thurstone’s box problem.

global A

A=[

.659 -.736 .138
.725 .180 -.656
.665 .537 .500
.869 -.209 -.443
.834 .182 .508
.836 .519 .152
.856 -.452 -.269
.848 -.426 .320
.861 .416 -.299
.880 -.341 -.354
.889 -.417 .436
.875 .485 -.093
.667 -.725 .109

717 .246 -.619
.634 .501 .522
.936 .257 .165
.966 -.239 -.083
.625 -.720 .166
.702 .112 -.650
.664 .536 .488
1;

T=eye(3);

[T,table]=GPoblq(T);

table
L=A*inv(T’)
phi=T’*T

The output from this code is

table =

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

O© 0 NO O WN -

e e e L e
o Ok WN = O
W W WWwWwwddhdororoo N 00 00 00 0 0 0

-
~

.9209
.9009
.8719
. 7644
.6325
.4566
.0945
.0348
.2796
. 7333
.1788
.6907
.0249
.5970
.3853
.1567
.0617
.0118

|
o O

O O O O OO O OO OO OoO oo oo

.1505
.0199
.1131
.4425
.5982
.5186
.6242
.8246
.8494
.6539
.5326
.4400
. 7080
.4900
.3835
.3907
.1910
.0280

10

O O O O O O OO OO OO OOO O o

.0000
.0156
.0312
.0625
.0312
.0156
.0312
.0625
.0312
.0156
.0312
.0625
.1250
.0312
.0312
.0625
.0312
.0312

18.
19.
20.
.0000
22.
23.
24.
25.
26.
27.
28.
29.
30.
.0000
32.
33.
34.
35.
36.
37.
38.
39.
40.
.0000

21

31

41

0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

.0996
.0071
.0129
.05648
.8563
.8356
.1029
.3221
.4628
.0766

N DNDNDNDNDNDNDNDNDNDNDNDNDNODNDNDNDNDNDNODDNDDNDDNDDNDNDNDN

.9720
.9615
.9562
.9524
.9518
.9515
.9513
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512
.9512

.0236
.0428
.0332
.4493
.3740
. 0487
L1227
.8817
.0852
.6043

.0078
.3226
.4933
.6438
.9349
.1187
.2807
.5887
L7796
.9144
.2498
.4469
.5444
.9094
.1135
.2996
.4657
N
.9692
.0959
.4391
.6370
. 7232
.0972

.0171
.0100
.0504
L7723
.0693
.3604
.5375
.0312
. 7838
.6583

11

O O O O O OO OO OO OO OO O OO OO oo oo

.0625
.0156
.0312
.0625
.0156
.0312
.0625
.0156
.0312
.0625
.0156
.0312
.0625
.0156
.0312
.0312
.0625
.0156
.0312
.0625
.0156
.0312
.0625
.0156

0.4278 -0.9289 0.1229
0.6594 0.0772 -0.6073
-0.1088 -1.0080 -0.0174
0.0595 0.0956 -0.9868
0.9899 0.0072 0.0947
0.7137 -0.2427 -0.3283
0.2203 -0.6354 -0.4597
-0.0847 -1.0022 0.0557
-0.0592 -0.0113 -0.9769
1.0034 0.0365 0.039%4

1.0000 -0.2668 -0.3216
-0.2568 1.0000 0.3366
-0.3216 0.3366 1.0000

To the precision displayed the rotated loading matrix L and the factor cor-
relation matrix phi are identical to those produced using the oblique GP
algorithm with exact derivatives.

References

Jennrich, R.I. (2001). A simple general proceedure for orthogonal rotation.
Psychometrika, 66, 289-306.

Jennrich, R.I. (2002). A simple general method for oblique rotation. Psy-
chometrika, 67, 7-19.

Jennrich, R.I. (2003). Derivative free gradient projection algorithms for ro-
tation. Submitted to Psychometrika.

Matlab (1995). The MathWorks Inc., 24 Prime Park Way, Natick, MA,
01760.

Thurstone, L.L. (1947). Multiple Factor Analysis. Chicago: University of
Chicago Press.

12

